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1. Introduction

Recently much effort has focused on the study of orientifold compactifications of type II

string theory with space-time filling D-branes and background fluxes. The reason is that

these compactifications can lead to calculable four-dimensional effective theories supporting

string vacua relevant for particle physics and cosmology [1 – 3]. Particularly well controlled

are warped type IIB Calabi-Yau orientifolds with space-time filling D3 and D7 branes

which yield a four-dimensional effective theory with N = 1 supersymmetry [4, 3]. It was

realized that in these compactifications the inclusion of background fluxes and certain non-

perturbative corrections might lead to a stabilization of all unwanted scalar moduli fields

in a local vacuum [5]. This was demonstrated for specific examples e.g. in refs. [6 – 9] and

strengthened the believe in a vast landscape of supersymmetric and non-supersymmetric

string vacua [3]. In order to study these vacua a precise knowledge of the N = 1 character-

istic data of the four-dimensional effective theory is of central importance. In particular,

this includes the understanding of perturbative and non-perturbative corrections to the

Kähler potential and the superpotential.

The aim of this work is to investigate the leading perturbative and non-perturbative

corrections for Calabi-Yau orientifolds with O3 and O7 planes. We first study the α′

corrections inherited from the underlying N = 2 theory which survive the large volume
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limit of the orientifold. This includes the perturbative α′ corrections discussed in ref. [10].

Moreover, we argue by using the results of refs. [11, 12] that also non-perturbative α′

corrections involving the NS-NS B-field can survive the large volume limit of the orientifold.

These corrections are generically present in compactifications in which the B-field is not

entirely projected out by the orientifold symmetry.1 The real B-field scalars combine

with the scalars of the R-R two-form C2 into complex scalars Ga through the combination

C2−τB2, where τ is the complex dilaton-axion [11]. The perturbative and non-perturbative

α′ corrections in the orientifold large volume limit do not correct the N = 1 coordinates.

They do however contribute to the Kähler potential and we will be able to determine

these corrections explicitly in terms of the topological invariants of the underlying Calabi-

Yau manifold. We will also study the non-perturbative superpotential generated by D3-

instantons wrapping a four-cycle in the Calabi-Yau manifold and show that it generically

depends on the scalars τ and Ga. In order to do that, we implement the non-perturbative

symmetries inherited from the full type IIB string theory.

Type IIB string theory possesses a strong-weak duality known as S-duality. This non-

perturbative symmetry relates one type IIB theory with complex string coupling τ to a

dual type IIB string theory with string coupling −1/τ . Moreover, it exchanges the NS-

NS and R-R two-forms and thus fundamental strings with D1 branes. Together with the

shifts in the axion, τ → τ + 1, the S-duality transformation generates the discrete duality

group Sl(2, Z). In an N = 1 compactification this group will generically be reduced

further or broken completely by to the non-trivial background geometry. However, in the

orientifold compactifications under consideration the complex dilaton τ does not vary over

the compact six-dimensional geometry and appears as four-dimensional chiral field [4, 3].

In this limit we expect that a subgroup ΓS of the full Sl(2, Z) duality is a symmetry of the

four-dimensional theory in analogy to refs. [13, 14]. Determining the transformations of

the N = 1 coordinates under ΓS as well as integral shifts of the NS-NS B-field allows us to

study the moduli dependence and symmetries of the Kähler potential and superpotential

in the orientifold large volume limit.

We begin by discussing the transformation properties of the Kähler potentials under

ΓS when α′ corrections are included. In order for these to be invariant under ΓS also

contributions from D1 and D(-1) branes have to be taken into account. In general, it is

hard to compute these corrections. We will however be able to discuss candidate com-

pletions which reproduce the perturbative and non-perturbative α′ corrections and admit

the desired transformation properties. In order to obtain these solutions we will simply

sum over images of the α′ corrections under the duality group following [15, 16]. This does

however not guarantee that the result is the true non-perturbative completion. Firstly, this

analysis is only valid in the orientifold limit in which the type IIB symmetry is not entirely

broken by the vacuum and a discrete group ΓS is preserved. Secondly, even though this

symmetry group ideally restricts the answer to be generated by a finite set of appropriately

transforming functions additional boundary conditions are needed to fix the precise form

1An example of a Calabi-Yau orientifold with non-vanishing B-field moduli is presented in the second

part of this paper. For other examples which admit these additional moduli fields, see e.g. ref. [9].
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of the duality invariant completion.2 For corrections to the N = 1 Kähler potential this

task is even more involved, since the Kähler potential is not protected by holomorphicity or

non-renormalization theorems. The application of string-string dualities such as heterotic-

F-theory duality might however help to compute these corrections explicitly as argued,

for example, in refs. [21, 22]. One expects that modularity arguments are however more

powerful when arguing about the superpotential.

In N = 1 theories the superpotential is holomorphic and protected against perturbative

corrections. For the type IIB orientifold setups the determination of the D3-instanton

superpotential is of central importance. However, its explicit form is in general hard to

determine [23 – 25]. Nevertheless, by combining holomorphicity and modular properties

under the inherited type IIB Sl(2, Z) symmetry as well as shifts in the NS-NS B-field

the moduli dependence of the superpotential in general large volume orientifolds can be

discussed. In case the complex dilaton τ varies over the internal space only a local analysis

of the superpotential can be performed [26, 27]. Here our results are more restrictive due

to the fact that τ,Ga do not vary over the compact space. We find that the complex fields

Ga depending on the NS-NS and R-R two-form moduli naturally arise through products of

theta-functions and modular forms with the complex dilaton-axion τ as modular parameter.

In the second part of the paper we propose that this set of theta-functions can be determined

for a specific orientifold example.

The specific example we consider is an orientifold of the Enriques Calabi-Yau. The

underlying Calabi-Yau manifold is a K3 fibration of the form YE = (K3×T 2)/Z2 [28, 29],

where the freely acting Z2 symmetry yield a minus sign on the complex coordinate of T 2 and

acts as the Enriques involution on the K3 surface [30]. We will show that an appropriate

definition of the orientifold projection allows to explicitly determine the N = 1 four-

dimensional effective theory. Since the geometric moduli space of the underlying N = 2

theory is not corrected by world-sheet instantons or perturbative α′ corrections the resulting

N = 1 theory is particularly well controlled. We will show that the N = 1 moduli space

is a product of two cosets M̃sk × M̃q. The first factor M̃ks arises from the reduction of

the N = 2 special Kähler manifold containing the complex structure deformations of YE.

It is itself a special Kähler manifold and was studied intensively in the literature [31, 20].

The reduction of the N = 2 quaternionic manifold leads to a Kähler manifold M̃q of half

its dimension. Remarkably, M̃q can be identified with the original N = 2 special Kähler

manifold of complexified Kähler structure deformations Mks times an Sl(2, R)/U(1) factor.

In this identification half of the NS-NS fields arising as real parts of coordinates on Msk

are replaced by R-R fields. The resulting N = 1 coordinates encode the correct couplings

to D(-1), D1 and D3 branes. Note however, that this duality is not performed in the large

volume coordinates on Msk, but rather at a special locus where also the volume of the K3

fiber can be small.

The physics in the regime where the K3 fiber of the Enriques Calabi-Yau is small

was studied intensively in the underlying N = 2 theory. It was shown in ref. [32] that

at the limit were the K3 fiber is of Planck length the type II theory undergoes a phase

2See [17 – 20] for the discussion of an analogous problem within topological string theory.
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transition somewhat similar to the well-known conifold transition. It was later argued in

ref. [31] that the light BPS degrees of freedom at this locus are bound states of D4, D2

and D0 branes wrapped around specific four and two-cycles of YE. The authors of [31]

showed that the topological string theory on the Enriques Calabi-Yau can be resummed

to count the degeneracies of these degrees of freedom. The leading contributions arise

through a particular holomorphic function ΦB known from the work of Borcherds [33, 34]

and Harvey, Moore [35, 36]. Here we will employ the duality of the theory on Mks at this

special locus to the corresponding orientifold theory. We propose that ΦB naturally arises

in the N = 1 superpotential containing the D3-instanton corrections proportional to eiTS ,

where TS contains the volume of the K3 fiber. In accord with our general considerations,

the coefficients are indeed generalizations of theta functions depending on the modular

parameter τ , the dilaton-axion, as well as the scalars Ga arising from the NS-NS and

R-R two-forms. The study of the Enriques orientifold exemplifies nicely the interplay of

holomorphicity and symmetry properties for the non-perturbative superpotential.

This paper is organized as follows. In section 2.1 we briefly review the effective theory

of type IIB orientifolds with O3 and O7 planes. We discuss the reduction of an N = 2

theory defined by two general pre-potentials for complex structure and Kähler structure

deformations respectively. It is then shown in section 2.2 that certain α′ corrections survive

in the large volume limit of the orientifold and correct the Kähler potential in an explic-

itly calculable way. The modular completion of these corrections by D(-1) and D1 brane

contributions is discussed in section 2.3. In section 2.4 we turn to the discussion of the

non-perturbative superpotential generated by D3-instantons. We study its transformations

under the type IIB symmetries and argue for a moduli dependence through generalizations

of theta functions. In section 3 we present an explicit example by introducing an orien-

tifold of the Enriques Calabi-Yau manifold. We first summarize some details about the

N = 2 theory in section 3.1. The Kähler potential and an interesting duality map is stud-

ied in 3.2. Finally, in section 3.3 we propose a particular non-perturbative superpotential

counting degeneracies of D3, D1, D(-1) bound states.

2. Non-perturbative corrections and modularity

In this section we discuss non-perturbative corrections and the transformation properties

of the N = 1 effective action of type IIB string theory compactified on an orientifold

background. We begin with a brief review of the four-dimensional effective theory in

section 2.1. In section 2.2 we show that in the orientifold large volume limit the perturbative

and certain non-perturbative α′ corrections inherited from the underlying N = 2 theory

correct the N = 1 Kähler potential. We will argue that these corrections generically do

not respect the type IIB Sl(2, Z) symmetries in section 2.3. Since in the orientifold limit a

subgroup ΓS of this symmetry group is expected to be preserved we comment on modular

completions of the Kähler potential. Finally, in section 2.4 we analyze the transformation

properties of the N = 1 complex coordinates and constrain the D-instanton superpotentials

to contain generalizations of theta functions. This leads to a new moduli dependence of

the superpotential which is generic for many orientifold compactifications.
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2.1 Brief review of the effective action of type IIB orientifolds

In this section we review the N = 1 effective supergravity theory arising by compactifica-

tion of type IIB supergravity on an orientifold background following [4, 10 – 12, 37]. We

will focus on orientifold projections yielding O3 and O7 planes and include the leading

perturbative α′ corrections [10] as well as the world-sheet instanton corrections inherited

from the underlying N = 2 theory [12]. Since there exists a number of reviews [3] on this

topic we will keep our discussion brief.

In type IIB orientifolds with O3/O7 planes the orientifold projection takes the form

(−1)FLΩpσ, where FL is the left fermion number, Ωp is the world-sheet parity reversal and

σ is some geometric involutive symmetry of the background. In order to preserve N = 1

supersymmetry σ has to be a holomorphic and isometric involution. It acts non-trivially

on the internal Calabi-Yau manifold Y and leaves the four flat directions invariant. For

models with O3/O7 planes σ acts on the Kähler form J and holomorphic three form Ω of

Y as

σ∗J = J , σ∗Ω = −Ω , (2.1)

where σ∗ is the pull-back. In order to remain in the spectrum the NS-NS and R-R fields

have to transform as follows under σ∗. The dilaton φ, the axion C0 as well as the four-form

C4 are invariant under the action of σ, while the NS-NS two-form B2 and R-R two-form C2

transform with a minus sign. Type IIB Calabi-Yau orientifolds with O3/O7 planes have

the following truncated N = 1 moduli space:

M̃sk × M̃q , (2.2)

where M̃sk is a special Kähler manifold inside the N = 2 special Kähler manifold Msk and

M̃q is a Kähler manifold inside the N = 2 quaternionic manifold Mq. In the following we

will describe the geometry of the moduli space (2.2) in more detail.

Let us start with some comments on the cohomology of the orientifold theory and

the reduction of Msk. Since σ is a holomorphic involution the cohomology groups H(p,q)

split into two eigenspaces under the action of σ∗ as H(p,q) = H
(p,q)
+ ⊕ H

(p,q)
− . We denote

the dimensions of H
(p,q)
± by h

(p,q)
± . The four-dimensional invariant spectrum is found by

using a Kaluza-Klein expansion in harmonic forms keeping only the fields which in addition

obey the correct transformations under σ∗. This induces a reduction of the special Kähler

manifold Msk for the orientifold setups. Since σ transforms the complex three-form Ω with

a minus sign the complex structure deformations parametrized by the elements of H(2,1) are

reduced to h
(2,1)
− complex scalars zk. It can be shown that these define a h

(2,1)
− dimensional

special Kähler submanifold M̃sk of the original N = 2 moduli space of complex structure

deformations. The Kähler potential on M̃sk takes the well-known form

Kcs(z, z̄) = − ln
[

i

∫

Y
Ω(z) ∧ Ω̄(z̄)

]

, (2.3)

where Ω(zk) varies holomorphically over M̃sk. Recall that in the underlying N = 2 theory

the complex scalars z were part of vector multiplets. In the orientifold reduction also

h
(2,1)
+ of the vectors survive. The gauge-kinetic coupling function is the second derivative
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of the pre-potential of the underlying N = 2 special Kähler manifold Msk with respect

to the complex structure deformations zκ, which are then set to zero in the orientifold

scenario [11].

The reduction of the quaternionic space Mq is slightly more involved. Since σ leaves

the Kähler form J invariant and yields a minus sign on the B2 field we expand

J = vαωα , α = 1, . . . , h
(1,1)
+ , B2 = baωa , a = 1, . . . , h

(1,1)
− , (2.4)

where ωα is an integral basis of H2
+(Y, Z) and ωa is an integral basis of H2

−(Y, Z). The

conditions (2.4) defines a real subspace of the h(1,1) dimensional space of complexified

Kähler deformations Mks of Y . This is due to the fact that either the real or the complex

part of the complexified Kähler form survives:

−B2 + iJ = tAωA = −baωa + ivαωα . (2.5)

Let us now include the R-R forms. Invariance under the orientifold projection enforces the

expansions

C2 = caωa , C4 = ραω̃α , (2.6)

where ωa was already introduced in (2.4) and we have denoted by ω̃α an integral basis of

H4
+(Y, Z) dual to ωα. Note that in (2.6) we have only displayed the part of the expansion

of C4 which leads to four-dimensional scalars.3 Let us now define the even form

ρ = 1 + tAωA −FAω̃A + (2F − tAFA)ǫ , (2.7)

where F is the pre-potential on Mks and FA is its first derivative with respect to tA. The

orientifold effective theory including a general pre-potential F was derived in refs. [12, 37].

It was shown there, that the complex coordinates on the Kähler manifold M̃q are obtained

in the expansion

ρc ≡ e−B2 ∧ CRR + iRe
(

Cρ
)

= τ + Gaωa − Tαω̃α , (2.8)

where CRR = C0 + C2 + C4 and the function C is identified with the dilaton e−φ. The

Kähler potential for the complex scalars τ,Ga, Tα is then shown to be

Kq(τ,G, T ) = −2 ln

[

i

∫

Y

〈

Cρ,Cρ
〉

]

(2.9)

= −2 ln
[

i|C|2
(

2(F − F̄) − (Fα + F̄α)(tα − t̄α)
)]

,

where we have inserted the even form ρ defined in (2.7) to evaluate the second equality.4

Note that K is a function of the imaginary part Imρc = Re(Cρ) of ρc only. This implies

that K only depends on the combinations τ − τ̄ , Ga − Ḡa and Tα − T̄α. For a general pre-

potential F it is impossible to explicitly write K as the function of τ,Ga, Tα. This is due to

3The vectors discussed in the previous paragraph arise precisely in the expansion of C4 into appropriate

three-forms.
4The anti-symmetric product between two even forms ρ, λ is defined as the alternating wedge product

˙

ρ, λ
¸

= ρ0 ∧ λ6 − ρ2 ∧ λ4 + ρ4 ∧ λ2 − ρ6 ∧ λ0, where ρp, λp are the p-form parts of ρ, λ.
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the fact that one would need to express Im(Cρ) as a function of Imρc = Re(Cρ) appearing

in the N = 1 coordinates (2.8). This functional dependence is highly non-polynomial

and can only be determined explicitly in specific examples.5 Nevertheless, one can derive

the Kähler metric by using the underlying N = 2 special geometry [12] or the work of

Hitchin [38] as done in [39].

So far we have determined the N = 1 kinetic terms of the scalar and vector fields.

Masses for these scalar fields can be generated by a non-trivial superpotential or the pres-

ence of D-terms. In the rest of the paper we will only discuss the inclusion of a superpo-

tential. In type IIB orientifolds with O3/O7 planes it can be generated by non-vanishing

R-R and NS-NS three-form flux F3 and H3 as well as non-perturbative corrections due to

D-instantons. It takes the form [23, 40, 4, 5]

W =

∫

Y
Ω(z) ∧

(

F3 − τH3

)

+ WD-inst(τ, z,G, T, . . .) . (2.10)

The first term is the well-known Gukov-Vafa-Witten flux superpotential, while the second

term encodes the D-instanton effects. We will discuss the field dependence and modular

properties of WD-inst in section 2.4. In order to do that it is often convenient to also refer to

the underlying F-theory description of the orientifold setup. We therefore end this section

with some remarks on the F-theory embedding and four-dimensional symmetries.

Type IIB orientifolds with O3 and O7 planes arise as a special limit of F-theory [41]

compactified on particular four-dimensional Calabi-Yau manifolds [42]. These fourfolds

have to admit an elliptic fibration

Y4 → B3 , (2.11)

where B3 is some three-dimensional base manifold. The complex structure of the torus

fiber corresponds to the complex dilaton τ introduced above. In general τ can vary over

the base B3. This implies the existence of a modular group ΓM associated to the elliptic

fibration. This group encodes the monodromies around the singular points of the fibration

and is a discrete subgroup of the torus symmetry group Sl(2, Z). The complete Sl(2, Z)

symmetry corresponds to the non-perturbative symmetry of type IIB string theory. In

the full F-theory compactification it is reduced or broken due to the background geometry

Y4 [41, 43]. Roughly speaking, the larger the modular group ΓM ∈ Sl(2, Z), the fewer

symmetries survive in the effective four-dimensional action.

In this paper we will entirely focus on the orientifold limit reviewed in this section [4, 3].

It was shown in [42] that in this limit the base B3 can be obtained as a quotient of a

Calabi-Yau manifold by an involution σ as discussed above. The singularities of elliptic

fibration (2.11) determine the location of the space-time filling O7 planes and D7 branes.

However, in the above orientifold limit, both the complex dilaton as well as the fields Ga

do not vary over the base B3, but correspond to chiral fields in four space-time dimensions.

In other words, in this limit the monodromy group ΓM acts trivially on τ,Ga and we

expect that a subgroup ΓS ⊂ Sl(2, Z) survives as a symmetry of the effective action. This

symmetry posses stringent constrains on the N = 1 characteristic data of the orientifold

5This is equivalent to the problem of solving the attractor equations for N = 2 black holes.
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compactification in analogy to [13, 14]. In the next sections we discuss these conditions in

detail. Clearly, a more general analysis would consider the full F-theroy compactification

and we hope to return to this problem in forthcoming work. Let us just remark here, that

there is no known effective action of twelve-dimensional F-theory. The four-dimensional

N = 1 effective theory thus has to be determined by an M-theory lift. More precisely, one

compactifies M-theory on the elliptically fibered fourfold Y4 to obtain a three-dimensional

effective theory. This theory is then lifted to four-dimensions by growing an extra non-

compact dimension. The F-theory moduli thus arise from the expansion of the M-theory

fields, such as the three-form CM , into harmonics of Y4. A detailed discussion of the

derivation of the effective action can be found, for example, in refs. [44, 45, 37].

2.2 Perturbative and non-perturbative α′ corrections in the orientifold large

volume limit

In this section we simplify the discussion and work in the large volume limit of the orien-

tifold Y/σ. This implies that we consider the regime where vα is large. Note that this is

not the same as demanding that all vA are large on the underlying Calabi-Yau manifold.

To make this more precise, recall that the orientifold projection forces us to set va = 0 for

h
(1,1)
− directions and bα = 0 for h

(1,1)
+ directions. Together, these conditions define a real

h(1,1)-dimensional Lagrangian submanifold in the complex N = 2 Kähler moduli space [12].

This subspace does not necessarily contain the N = 2 large volume point. Examples for

such a situation can be found in ref. [46]. Clearly, in case the N = 2 large volume point

is not in the N = 1 locus, the orientifold projection does not commute with the taking all

two-volumes to be large and we are forced to include instanton corrections to the classical

orientifold set-up.

A possible point where those corrections become relevant are the contributions de-

pending on ta = −ba. World-sheet instantons coupling via the exponential eita are not

necessarily suppressed in the large volume limit of the orientifold. We therefore include the

non-pertubative α′ corrections inherited from the underlying N = 2 theory. More precisely,

we obtain in this limit a pre-potential of the form6

F = Fclass + Fpert + Fb (2.12)

= −
1

3!
KABCtAtBtC −

i

2
ζ(3)χ + i

∑

β∈H−

2 (Y,Z)

n0
β Li3(e

ikata) ,

where ka =
∫

β ωa with ωa being an integral basis of H2
−(Y, Z). Let us discuss the three con-

tributions in (2.12) in turn. The cubic term Fclass corresponds to the classical contribution

and we denote the triple intersections of the integral basis ωA ∈ H2(Y, Z) by

KABC =

∫

Y
ωA ∧ ωB ∧ ωC . (2.13)

6Note that in general F can also admit a cubic and linear term of the form BABtAtB, AAtA. However,

since AA, BAB are always real it is easy to check that they do not appear in the Kähler potential (2.9).

They only correct the coordinates Tα and we will not consider these contributions in the following.
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Note that in the orientifold setup consistency requires that for the spilt ωA = (ωα, ωa) the

following intersections have to vanish:

Kαβa = Kabc = 0 . (2.14)

In other words only the intersections Kαβγ and Kαab with zero or two negative indices can

appear in (2.12). The second term Fpert in (2.12) is proportional to the Euler characteristic

χ = 2(h(1,1)−h(2,1)) of Y . It corresponds to an (α′)3 perturbative correction of the effective

action and was first considered in orientifold setups in ref. [10].

The third term Fb is inherited from the non-perturbative α′ corrections of the N = 2

pre-potential and was not discussed in the literature so far. In the large volume limit

of the orientifold only the terms depending on the B-field moduli ta = −ba survive in

the third polylogarithm Li3(x) =
∑

n>0 n−3xn. All other contributions are suppressed

exponentially by the volume of the curves in H+
2 (Y, Z). In other words, only the terms

proportional to the integer genus zero Gopakumar-Vafa invariants n0
β [47] for a curve β in

the negative eigenspace H−
2 (Y, Z) remain in the pre-potential. They can be determined for

many explicit examples of Calabi-Yau manifolds my using mirror symmetry [48]. However,

we have to make a cautionary remark on the convergence of the expansion (2.12). Since

the polylogarithm Li3(e
ikata) is bounded Fb appears divergent when summing over all β.

This would be very generically the case if β is not restricted to any sublattice in H2(Y, Z)

since the Gopakumar-Vafa invariants grow very rapidly. However, in the expression (2.12)

for Fb we only sum over degrees kA which are of the form kA = (0, ka), i.e. vanish on

the positive eigenspace of the orientifold. There are indeed examples for which the n0
β

truncates on such a sublattice (0, ka).
7 More generally, in case Fb is not finite this can be

traced back to the fact that we are actually working in the wrong coordinates ta. Before

restricting to the orientifold limit Imta → 0 the expression Fb has to be resummed in terms

of dual coordinates valid around Imta = 0. One is then able to implement the orientifold

projection with a finite Fb. In the following we will simply assume that Fb is finite when

restricting our general considerations to appropriate specific examples.

In order to determine the N = 1 coordinates we first insert the large volume pre-

potential (2.12) into the definition (2.7) of the even form ρ. Due to the presence of the

α′ corrections Fpert + Fb the classical expression ρclass = e−B2+iJ will receive non-trivial

corrections. However, it is easy to check that these corrections will not contribute to

the definition of the N = 1 coordinates τ,Ga, Tα defined in (2.8). A straightforward

computation shows that τ,Ga, Tα are given in terms of the real coordinates introduced

in (2.4) and (2.6) by

τ = C0 + ie−φ , Ga = ca − τba , (2.15)

Tα =
1

2
ie−φKαβγvβvγ − ρ̃α −

1

2(τ − τ̄)
KαabG

a(G − Ḡ)b , (2.16)

where ρ̃α = ρα − 1
2Kαabc

abb. These are precisely the coordinates introduced in ref. [11].8

7We are grateful to A. Klemm for discussions on this point.
8In contrast to ref. [11] we rescaled the coordinates Tα = 2i

3
T ref.

α and identified ρ̃α = ρref.
α .
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However, in contrast to the classical results the Kähler potential Kq is now corrected by

the α′ contributions encoded by Fpert + Fb in (2.12).

Let us make this more precise and evaluate the Kähler potential for the large volume

pre-potential (2.12). Inserting F into the general expression (2.9) for Kq one derives

Kq = −2 ln

[

e−2φ

(

1

3!
Kαβγvαvβvγ + 2ζ(3)χ − 4ImFb

)]

. (2.17)

In this expression the non-perturbative corrections inherited from the underlying N = 2

theory take the form

ImFb(τ,G) =
1

2

∑

β∈H−

2 (Y,Z)

n0
β

[

Li3

(

ei ka(Ga
−Ḡa)

τ−τ̄

)

+ Li3

(

e−i ka(Ga
−Ḡa)

τ−τ̄

)]

,

=
∑

β∈H−

2 (Y,Z)

∞
∑

n=1

n0
β

n3
cos

(

n
ka(G

a − Ḡa)

τ − τ̄

)

, (2.18)

where ka =
∫

β ωa as in (2.12). This implies that the moduli dependence on τ,Ga of both

α′ corrections to the Kähler potential can be determined explicitly. Rescaling the Kähler

deformations vα to the Einstein frame we can write Kq into the form

Kq = − ln
[

− i(τ − τ̄)
]

− 2 ln

[

VE +
1

(2i)3/2

(

τ − τ̄
)3/2[

2ζ(3)χ − 4ImFb

]

]

, (2.19)

where VE(τ,G, T ) is the Einstein frame volume of the Calabi-Yau orientifold and Fb(τ,G)

is explicitly given in (2.18). The large volume Kähler potential (2.19) includes the spe-

cial cases derived in refs. [4, 10, 11]. Here we were able to include the non-perturbative

contribution Fb(τ,G) and have shown that they can be expressed as explicit functions in

Ga − Ḡa and τ − τ̄ . In the next section we will discuss the invariance of the general Kähler

potential (2.19) under the Sl(2, Z) symmetry of type IIB string theory as well as shifts in

the B-field.

2.3 Symmetries of the Kähler potential

In this section we discuss the transformation properties of the Kähler potential under

dualities inherited from the ten-dimensional type IIB string theory. We will focus on the

Sl(2, Z) symmetry of type IIB as well as shifts in the NS-NS two-form B2.

Let us begin by discussing the symmetry of K under shifts of the NS-NS two-form B2.

More precisely, we will consider

B2 → B2 + 2πχ2 , χ2 = naωa , (2.20)

where χ2 is an integral two form in H2
−(YE , Z). For this transformation we easily verify that

the Kähler potential is invariant. The Einstein frame volume VE in (2.19) is invariant due to

its purely geometrical origin, while the perturbative contribution from Fpert is independent

of B2 and hence trivially invariant. Only the non-perturbative corrections encoded by Fb

explicitly depend on B2. However, B2 only arises through the exponential exp(−i
∫

β B2)
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which is invariant under integral shifts. We thus conclude that K is indeed invariant

under (2.20). In contrast, we will see in the next section that the N = 1 coordinates

Ga, Tα transform non-trivially under the shifts (2.20). This will allow us to infer valuable

information about the moduli dependence of the D-instanton superpotential in (2.10).

Let us turn to the symmetry inherited from the underlying type IIB theory. Recall

that type IIB string theory admits the discrete symmetry group Sl(2, Z). Denoting the ten-

dimensional dilaton-axion as τ = C0 + ie−φ this group acts by modular transformations

and rotates the ten-dimensional NS-NS and R-R two-forms B2 and C2 into each other.

More explicitly, we have

τ →
aτ + b

cτ + d
,

(

C2

B2

)

→

(

aC2 + bB2

cC2 + dB2

)

, (2.21)

where the integer matrix

 

a b

c d

!

is an element of Sl(2, Z).9 These transformations include

in particular the map τ → −1/τ which inverts the string coupling and corresponds to

the strong-weak duality known as S-duality. Compactifying type IIB string theory on a

Calabi-Yau orientifold background can reduce the symmetry group Sl(2, Z) to a subgroup

ΓS as discussed at the end of section 2.1.

Let us now check how the Kähler potential and Kähler coordinates transforms under

modular transformations (2.21) in ΓS. We concentrate in the following on the large volume

compactification characterized by the α′ corrected pre-potential (2.12). Using the explicit

expressions (2.15) and (2.16) for Ga, Tα we note that these N = 1 coordinates transform

under (2.21) as10

Ga →
Ga

cτ + d
, Tα → Tα +

1

2

c KαabG
aGb

cτ + d
. (2.22)

where a, b, c, d are the entries of an element of ΓS . We next analyze how the perturbatively

corrected Kähler potential (2.19) transforms under (2.22). It is very easy to evaluate the

transformation properties of the first term in (2.19) since

(τ − τ̄)−1 → |cτ + d|2(τ − τ̄)−1 . (2.23)

We thus have to focus on the transformation of the combination

VE(τ,G, T ) +
1

(2i)3/2

(

τ − τ̄
)3/2[

2ζ(3)χ − 4ImFb(τ,G)
]

. (2.24)

Clearly, the Einstein-frame volume VE is invariant under ΓS , since it is a purely geometric

quantity. Note however, that invariance does not hold for the α′ correction in (2.24).

This can be traced back to the fact that we did not include all corrections relevant in

9Here we have been a bit sloppy with factors of 2π, which however can be restored easily.
10For Tα to transform as in (2.22) we have used that e−φ/2vα and ρ̃α are invariant under (2.21). The

combination e−φ/2vα is precisely the invariant Einstein frame Kähler structure deformation, while ρ̃α arises

in the expansion of an Sl(2, Z) invariant C̃4 with field strength F5 = dC̃4 − 1
2
dB2 ∧ C2 + 1

2
B2 ∧ dC2. We

have also used that (τ − τ̄ )−1 → (cτ + d)2(τ − τ̄ )−1 − c(cτ + d).
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this large volume limit. Analogously to the discussion in refs. [15, 16] one can argue that

also corrections due to D(-1) branes as well as the reduction of D1 instantons have to be

included. These couple to the complex dilaton τ and Ga and can complete the α′ correction

in (2.24) in a modular invariant form. We propose that by including these contributions

the large volume Kähler potential Kq takes the form

Kq = − ln
[

− i(τ − τ̄)
]

− 2 ln

[

VE +
1

2
χf(τ, τ̄) − 4g(τ, τ̄ , G, Ḡ)

]

, (2.25)

and transforms under ΓS as

eK → |cτ + d|2eK . (2.26)

In general it is hard to determine the precise form of the modular invariant forms f(τ, τ̄)

and g(τ, τ̄ , G, Ḡ). In the remainder of this section we will discuss some properties of g, f

as well as some candidate modular completions. A calculation of f, g might be possible

by restricting the class of Calabi-Yau manifolds to K3 fibrations where heterotic-F-theroy

duality can be applied.

In the following we will first discuss the modular invariant function f(τ, τ̄) in (2.19). In

order to do that, we recall that in ref. [15] a similar problem arose in the computation of the

R4 correction to the ten-dimensional type IIB supergravity action. In this ten-dimensional

setup, an additional analysis of the properties of the τ -dependent coefficient f̂(τ, τ̄ ) led to

the identification

f̂(τ, τ̄ ) =
∑

(n,m)∈P

(τ − τ̄)3/2

(2i)3/2|m + nτ |3
, (2.27)

where P = Z
2/(0, 0) is a two-dimensional lattice without the origin. This non-holomorphic

Eisenstein series includes indeed the perturbative correction in (2.24), when n = 0 in the

sum (2.27). Moreover, it is invariant under the full group Sl(2, Z) and hence a candidate

modular completion of the Kähler potential. It was also conjectured in ref. [16] that the

function (2.27) is the correct modular completion of the analog situation in the underlying

N = 2 theory. In our setup one might want to restrict the sum in (2.27) only to orbits

of the subgroup ΓS. However, in any case modularity together with the limit n = 0 alone

seems not sufficient to fix the form of f(τ, τ̄) in (2.19). Additional conditions such as

the singularity structure or the suppression of further mixed contribution are needed to

determine f(τ, τ̄) unambiguously. This is in general hard and beyond the scope of this

paper. For the general discussion of the superpotential we will simply assume that such

a modular completion exists, while for our explicit example in section 3 we will find that

χ = 0.

Let us also briefly discuss the modular completion g(τ, τ̄ , G, Ḡ) of the non-perturbative

α′ corrections inherited from N = 2. The corrections we are missing in our computation

are the D1 branes dual to the world-sheets inducing the contribution Fb. More precisely,

we need to include the whole set of (p, q) strings [49, 50] to restore ΓS duality. Again we are

facing the problem that such corrections are hard to compute in general and we can only

discuss some candidate solution for g. In ref. [16] the modular completion of the underlying

N = 2 quaternionic geometry was conjectured to arise from a summation over all Sl(2, Z)

– 12 –
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images of the world-sheet instanton corrections. In the orientifold limit this leads to the

following definition of a modular invariant ĝ

ĝ(τ, τ̄ , G, Ḡ) =
∑

β

nka

∑

(m,n)∈P

(τ − τ̄)3/2

(2i)3/2|n + mτ |3
cos

(

(n + τm)
ka(G

a − Ḡa)

τ − τ̄
− mkaG

a

)

.

(2.28)

This sum encodes all images under Sl(2, Z) of the world-sheet instanton corrections in

ImFb divided by stabilizer group generated by shifts τ → τ + 1. In general one might also

want to restrict to orbits of the subgroup ΓS . It is not hard to check that ĝ contains the

contribution ImFb for m = 0. Once again we have to remark that even though ĝ has the

desired properties, the true correction g is expected to be more complicated. It would thus

be desirable to find independent ways to calculate g for specific setups. In the example of

section 3 all non-perturbative α′ corrections will be absent such that no g is inherited from

N = 2.

Before moving on to the discussion of the superpotential, let us compare the question

of determining f(τ, τ̄ ) and g(τ, τ̄ , G, Ḡ) to a somewhat similar situation within topological

string theory on a Calabi-Yau threefold [17 – 20]. The symmetry group in this case is the

target space duality group arising from the monodromies around singularities in the moduli

space. One can thus attempt to parametrize the non-perturbative corrections by modular

forms of this duality group which form a finite ring. Fortunately, the singularity structure

for the topological string partition function is often known and additional boundary con-

ditions allow to fix the precise modular forms encoding the non-perturbative corrections

at least up to a certain genus. These boundary conditions arise from the singularities of

the moduli space or through the application of string-string dualities (see e.g. [19, 20]).

One might thus hope that to redo a similar analysis in the N = 1 theories discussed in

this work. Clearly, one of the obstacles is the non-holomorphicity of the Kähler potential

as well as the presence of additional perturbative corrections. For the holomorphic N = 1

superpotential this situation is improved as we will discuss in the next section.

2.4 D-instanton superpotentials in type IIB orientifolds

Let us now discuss the D-instanton superpotential arising in type IIB orientifolds with

O3/O7 planes. The instantons contributing to the superpotential are typically Euclidean

D3 branes wrapped around special four-cycles inside the Calabi-Yau orientifold. In order

to give the precise conditions when such a potential arises, one has to embed this orientifold

setup into an F-theroy compactification. These conditions have been investigated first by

Witten in [23] and later refined for compactifications with background fluxes [51]. Since

here our primary interest is the definition of a symmetry invariant superpotential for a

generic orientifold compactification, we will directly go to the orientifold and assume that

these conditions are satisfied for the cycles under consideration.

In the type IIB orientifolds discussed in the previous sections the instanton superpo-

tential arises from specific Euclidean D3 branes. Let us consider such a brane warp around

a devisor Σ in Y/σ. We will pick the devisor such that it non-trivially contributes to the
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superpotential. Schematically these contributions are of the form

f(XI) e−VΣ+iφΣ (2.29)

where VΣ is the Einstein-frame volume of Σ and φΣ is the integral of the R-R four-form

C4 over Σ. The function f(XI) can depend on other chiral multiplets in the spectrum

and we will be the main focus of our considerations. Before turning to the discussion of

f , let us first note that the form of the exponential is not yet exact, since we are missing

the coupling to the lower R-R forms and the B-field in the exponential. Recall that the

effective action on the word-volume of the Euclidean D3 brane takes the form

SD3 = iTD3

∫

W4

d4λe−φ
√

det
(

g − B2 + F
)

+ TD3

∫

W4

CRR ∧ e−B2+F , (2.30)

where CRR = C0 + C2 + C4 are the Ramond-Ramond fields and F is the fieldstrength

on the brane. The first and second term correspond to the Born-Infeld and Chern-Simons

coupling respectively. In order that the D-instanton preserves supersymmetry it has to wrap

a supersymmetric cycle. Applying the standard calibration conditions for supersymmetric

branes we find that the correct couplings to the R-R forms and the B-field [52]. The correct

superpotential contribution is thus proportional to

exp

[

−
1

2

∫

Σ
e−φ

(

J ∧ J − B2 ∧ B2

)

− i

∫

Σ

(

C4 − C2 ∧ B2 + 1
2C0B2 ∧ B2

)

]

. (2.31)

Note that the first term under the first integral is VΣ, since the Kähler form J is evaluated in

the string-frame metric. The expression (2.31) is precisely exp(−i
∫

ρc) with ρc introduced

in (2.8). Thus we find that the generic superpotential is of the expected form

WD-inst =
∑

Σ

fΣ(XI) ein α
Σ Tα , n α

Σ =

∫

Σ
ω̃α , (2.32)

where n α
Σ are integers for Σ ∈ H4(Y, Z) and ω̃α ∈ H4

+(Y, Z). We are now in the position

to discuss the moduli dependence of f(X) in more detail.

So far we did not discuss the holomorphic function f(X). In general, it can depend

on various other moduli {XI} of the orientifold or underlying F-theory compactification.

As in (2.11) we denote the elliptically fibered fourfold corresponding to the orientifold by

Y4. The moduli dependence of f can arise from:

(a) the complex structure deformations of Y4: in the orientifold limit these include the

complex dilaton τ corresponding to the complex structure of the elliptic fiber, the

complex structure deformations of Y/σ as well as the D7 brane moduli,

(b) the h(2,1) complex scalars arising in the expansion of CM in H(2,1)(Y4): these include

the complex scalars Ga as well as Wilson lines of the D7 brane,

(c) the complex coordinates xi labeling the position of space-time filling D3-branes in Y4

or Y/σ.
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In the following we will discuss f(X) as a function of the complex dilaton τ , the moduli

Ga arising by expanding the type IIB NS-NS and R-R two-form. An analysis of the

dependence of f(X) on the positions of the space-time filling D3-branes xi on Y/σ can be

found in [27, 53].

It turns out that a direct computation of the function f(X) is in general very hard and

involves the evaluation of appropriate determinants [23]. However, we can already learn

much about f by studying the transformation properties of the superpotential and the

Kähler potential under shifts and modular transformations. This was already initiated in

refs. [26, 27] for M- and F-theory compactifications were only a local analysis can be per-

formed. Here we will make this discussion very concrete for the type IIB orientifolds studied

in section 2.1 and focus on its dependence on τ,Ga decomposing f(X) = A0Θ(τ,Ga), with

A0 depending on the remaining moduli. We thus write

W D-inst = A0

∑

Σ

ΘΣ(τ,G)ein α
Σ Tα . (2.33)

Let us now investigate the transformation properties of the coefficients ΘΣ(τ,Ga) in

more detail. We will first discuss the duality transformations induced by modular changes

of the complex dilaton τ as given in (2.21). In section 2.3 we have argued that eK transforms

as given in equation (2.26) under modular transformations. From this we conclude that

the superpotential has to change as11

W → (cτ + d)−1W . (2.34)

To see this, we note that the combination eK |W |2 has to be invariant since it determines,

for example, in the physical gravitino mass. Equation (2.34) exactly states that W has

to be a modular form of weight −1 under the duality group ΓS. Let us note that this

is obviously true for the flux superpotential W =
∫

Ω ∧ (F3 − τH3) in (2.10). For the

D-instanton superpotential (2.33) we will see momentarily, that this imposes constraints

on the functions ΘΣ(τ,G).

The second transformation we will consider are the shifts (2.20) in the NS-NS two-form

B2. More precisely, let us transform the orientifold coordinates by ba → ba + 2πna. From

the definitions (2.15) and (2.16) of the coordinates Ga, Tα we deduce that

Ga → Ga − 2πτna , (2.35)

Tα → Tα − 2πKαabn
aGb + 2π2τKαabn

anb .

As we have seen in section 2.3, it is not hard to check that this is a symmetry of the

orientifold Kähler potential. Due to the invariance of the combination eK |W |2 we conclude

that W can only transform by a trivial phase factor and is otherwise invariant. Invariance

of W together with the fact that Tα transforms as in (2.35) restricts the coefficient functions

ΘΣ(τ,G) of the instanton superpotential (2.33) as we will discuss next.

11In the following we will not include a possible phase. For a related discussion of the possibility to

include such a phase factor see, for example, refs. [13, 14].
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We can now infer the properties of the functions ΘΣ(τ,G) appearing in (2.33). Our

strategy is to use the fact that W is a modular form of weight −1 but otherwise invariant

under (2.21), (2.22) and (2.35). Since ein α
Σ Tα in (2.33) transforms non-trivially under

these symmetries also ΘΣ(τ,G) has to transform in order to ensure the correct modular

properties of W . It turns out that the Θ’s are generalizations of the well-known theta

functions, or more precisely appropriate holomorphic Jacobi forms.12 To summarize their

properties we simplify our analysis and restrict our attention to the case where only one

T ≡ Tα′ transforms non-trivially under the above groups. In other words, we will assume

here that the only non-vanishing intersection with negative indices is Kα′ab = −Cab. We

also denote n α′

Σ = n. The Jacobi form Θn(τ,G) then turns out to be of weight −1 and

index n. In other words, under the transformation (2.22) this form transforms as

Θn(τ,G) → (cτ + d)−1exp

(

ni

2

c CabG
aGb

cτ + d

)

Θn(τ,G) , (2.36)

which is consistent with the required transformation behavior (2.34). Also the transforma-

tion (2.35) of einT is cancelled by the corresponding Jacobi form Θn since

Θn(τ,G) → exp
(

− 2πinCabn
aGb + 2π2inτCabn

anb
)

Θn(τ,G) (2.37)

under the transformation (2.35). Carefully restoring factors of 2π the transforma-

tions (2.36) and (2.37) are exactly the transformation properties of Jacobi forms. For

only one field Ga, the theory of Jacobi forms is extensively reviewed by Eichler and Zagier

in ref. [54]. The more general situation including vectors Ga is discussed, for example, in

the work of Borcherds [55] (section 3).

Before turning to the example in the next section, let us summarize some classical

results about candidate Jacobi forms Θn [54, 55]. In order to do that we introduce the

theta functions of weight s/2 and index m by setting

θ(m) L+r(τ,G) =
∑

na∈L+r

eiτn2/2emiGana , n2 = Cabnanb , (2.38)

where L is some positive definite rational lattice of dimension s, and r is some vector which

admits an expansion in a basis of L with rational coefficients. It can be shown that any

Jacobi form Θn can be written as a sum of products of the theta functions θ(m) L+r and

modular forms η̃(τ). Heuristically, we can write

Θn(τ,G) =
∑ θ(n)(τ,G)

η̃(τ)
. (2.39)

This form is well known from various other perspectives. For example, it was shown in [56]

that the partition function of a chiral boson on a genus one surface is of this form. More

importantly, also the partition function of the M5 brane takes a form similar to (2.39) as

was first discussed in ref. [26]. This is no surprise, since we know that the F-theory lift of

12Holomorphicity here only means that ΘΣ(τ, G) is independent of τ̄ , Ḡa and does not restrict the singu-

larity structure.
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the D3 instantons are six-dimensional branes. Analyzing F-theory from the M-theory point

of view as mentioned at the end of section 2.1 these six-dimensional branes are M5 branes

wrapped around four-cycles in the base B3 of (2.11) as well as on the two-dimensional

fiber.

Clearly, an important task is to explicitly find the correct Jacobi forms Θn(τ,G) for

specific examples. One suspects that this problem is more tractable then determining the

modular corrections to the Kähler potential due to the holomorphicity of W and the absence

of perturbative corrections. Ideally, one likes to use physical arguments, for example on

the singularity structure of W , to restrict the set of candidate Jacobi forms to a finite

set. Computing W in a particular limit, e.g. an orbifold limit, might then determine the

correct linear combination to appear in the full W . In the next section, we will take a

different route in the study of the Enriques orientifold. We will use some intuition from

the topological strings on the Enriques Calabi-Yau to propose a candidate W including

non-trivial Jacobi forms Θn.

3. D-instantons and the Enriques orientifold

In this section we discuss one type IIB orientifold compactification in more detail and

illustrate some of the general story outlined in the previous section. We construct an

orientifold of the Enriques Calabi-Yau YE and argue that the quantum corrections are

under particular control. It is also shown how the N = 1 Kähler manifold M̃q inside

the N = 2 quaternionic space can be identified with the original special Kähler moduli

space times a Sl(2, R)/U(1) factor. In this duality the new complex coordinates contain

the R-R fields as in (2.8) and provide the correct couplings to D-instantons. We use this

identification to translate instanton expansions known from topological string theory on

YE to the corresponding physical orientifold setup. This leads us to propose a specific

D-instanton superpotential for the Enriques orientifold.

3.1 Enriques Calabi-Yau and counting of D(-1)-D1-D3 states

Let us begin by reviewing some basic facts about the Enriques Calabi-Yau YE and its

moduli space. The Enriques Calabi-Yau takes the form YE = (K3 × T
2)/Z2, where the

Z2 acts as an inversion of the complex coordinate of T
2 and as the Enriques involution on

K3 [28 – 30]. YE has holonomy group SU(2) × Z2. This implies that type II string theory

compactified on the Enriques Calabi-Yau will lead to a four-dimensional theory with N = 2

supersymmetry. Nevertheless, due to the fact that it does not have the full SU(3) holonomy

of generic Calabi-Yau threefolds, various special properties of N = 4 compactifications on

K3 × T
2 are inherited.

In order to discuss the moduli space of YE we first need to summarize the cohomology

on this Calabi-Yau manifold. We review in appendix A that the two-form and three-from

integral cohomologies can be identified with the following lattices [29]

H2(YE , Z) ∼= Z ⊕ Γ1,1 ⊕ ΓE8(−1) , (3.1)

H3(YE , Z) ∼=
(

Γ1,1 ⊕ ΓE8(−1) ⊕ Γ1,1
g

)

⊕
(

Γ1,1 ⊕ ΓE8(−1) ⊕ Γ1,1
g

)

, (3.2)
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where Γ1,1 is a two-dimensional lattice with signature (1, 1) and inner product

 

0 1

1 0

!

, and

ΓE8(−1) has an inner product given by −1 times the Cartan matrix of the exceptional

group E8. We denote an integral basis (ωA) = (ωS , ωi, ωa) of H2(YE , Z), where ωS, ωi and

ωa are basis elements of the three terms in (3.1) respectively. We already defined the triple

intersections KABC in (2.13). Using the relation to the underlying K3×T
2 one shows that

the only non-vanishing intersections are

KS12 = KS21 = 1 , KSab = −Cab , (3.3)

where in the appropriate basis the inverse Cab of Cab is the Cartan matrix of E8 as already

mentioned before. As in section 2.1 we also introduce a basis (ω̃A) = (ω̃S , ω̃i, ω̃a) of

H4(YE , Z) dual to ωA. Finally, we will need to introduce a real symplectic basis (αA, βA)

of the third cohomology H3(YE , Z).

The explicit form (3.1) and (3.2) of the integral cohomology of YE allows us to read of

the dimensions h(p,q) of the cohomologies H(p,q)(YE). We find that

h(1,1)(YE) = h(2,1)(YE) = 11 . (3.4)

This implies that the moduli spaces of complex structure deformations Mcs as well as of

Kähler structure deformations Mks are both complex eleven-dimensional. Moreover, one

shows that both of these spaces are the coset [29]

Mcs/ks = Sl(2, R)/U(1) × O(10, 2)/
(

O(10) × O(2)
)

, (3.5)

where O(q, p, R) are orthogonal groups with values in the real numbers. The identification

Mcs
∼= Mks arises due to the fact that the Enriques Calabi-Yau is self-mirror. In a careful

treatment one also finds that these cosets have to be divided by the discrete symmetry

group

OE(Z) ≡ Sl(2, Z) × O(10, 2, Z) , (3.6)

which is a non-perturbative symmetry of string theory on YE . The presence of this discrete

factor is of central importance. All functions on Mcs/ks have to transform covariantly

under OE(Z) to be well defined. Furthermore, note that after dividing by OE(Z) the

identification (3.5) is exact and receives no corrections due to world-sheet instantons [29,

57]. As we will discuss next this implies that the Enriques Calabi-Yau is a special example

with an exact pre-potential cubic in the moduli around the large volume or large complex

structure point. To make this more precise we discuss the geometry of the moduli space

Mks in more detail. Clearly, due to the fact that YE is self-mirror the geometry of Mcs

takes a similar form.

Compactifying Type II string theory on the Enriques Calabi-Yau yields an effective

four-dimensional theory with N = 2 supersymmetry. In general, the N = 2 scalar moduli

space consists of a special Kähler Msk times a quaternionic manifold Mq. For the Enriques

Calabi-Yau both spaces are cosets. Since we are interested in type IIB compactifications we

find that the complex structure deformations are the space Msk while the Kähler structure

deformations sit inside the quaternionic space Mq. One finds [29]

Msk = Mcs , Mq = O(12, 4)/
(

O(12) × O(4)
)

⊃ Mks . (3.7)
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Note that Msk is exact and receives no perturbative corrections or corrections due to world-

sheet or D-instantons. In contrast, Mq is in general perturbatively and non-perturbatively

corrected. The geometry of the two moduli spaces in (3.7) is encoded by two cubic pre-

potentials. For Msk one finds around the large complex structure point a pre-potential of

the form13

F̃(z) = −zSz1z2 +
1

2
zSCabz

azb . (3.8)

Due to the absence of world-sheet instanton corrections this potential is exact and can

be transformed and used at other points in the moduli space Msk. This special Kähler

manifold encodes deformations of the complex structure through the holomorphic (3, 0)

form

Ω(z) = XK(z)αK − F̃K(z)βK , (3.9)

where (αK , βK) is a real symplectic basis of H3(YE , Z). The periods of Ω are thus

(XK , F̃K), where F̃K is the derivative of F̃(z) with respect to XK . In the spacial co-

ordinates z above one has zS = XS/X0, zi = Xi/X0 and za = Xa/X0. One can thus

rewrite F̃K as derivatives with respect to the coordinates z [58].

The quaternionic manifold Mq can be constructed by starting with the underlying

special Kähler manifold Mks(t). The coordinates tA = (S, ti, ta) are the complexified

Kähler structure deformations of YE arising in the expansion of −B2 + iJ into the two-

form basis ωA = (ωS , ωi, ωa). The geometry of the special Kähler manifold is determined

by the pre-potential14

F(t) = −St1t2 +
1

2!
SCabt

atb . (3.10)

It is straightforward to derive the corresponding Kähler potential Kks(S, S̄, t, t̄). In general,

Kks can be obtained from the even form ρ introduced in (2.7) by setting Kks = − ln i
〈

ρ, ρ̄
〉

with wedge product defined in footnote 4. Inserting (3.10) into this expression one evaluates

Kks = − ln
(

i(S − S̄)Y
)

, Y = (t − t̄)1(t − t̄)2 − 1
2 (t − t̄)a(t − t̄)bCab . (3.11)

The classical quaternionic geometry can be obtained from Mks by applying the c-map

construction [59]. Since our focus will be the orientifold scenario, we will not review

the details here. Let us however note that the quaternionic geometry is invariant under

the Kähler transformations of Kks. It is therefore naturally formulated in terms of the

invariant combination Cρ, with C proportional to the dilaton e−φ. Note that C and ρ

itself do transform under the Kähler transformations Kks → Kks − f(t) − f̄(t̄) as

C → e−f C , ρ → ef ρ , (3.12)

where f(t) is a holomorphic function of the moduli.

We will now go one step further and discuss a first set of quantum corrections depending

on the moduli of Mks. Following [35, 36, 31] we will introduce a functional ΦB which counts

13A more careful analysis reveals that there is a linear term −zS in F̃(z) [31]. This term however does

not appear in the Kähler potential and hence not in any physical object discussed in the following.
14As in (3.8) we ignore a linear term in S which can be absorbed into a redefinition of the coordinates

on Mq.
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the leading degeneracies of D(-1), D1, D3 states on the Enriques fiber. Before recalling the

precise form of these corrections let us note that this investigation will not take place in

the large volume limit but rather at a second special locus of the Enriques moduli space.

At this locus also Euclidean D3 branes wrapped around a the Enriques fiber are becoming

light. To make this more precise, we will choose ‘dual’ coordinate T 1,T 2,T a in which large

ImT implies a small volume of the K3. The transformations from the large volume limit

to this special Enriques locus is given by

T 2 = −
1

2t2
, T 1 =

1

t2

(

t1t2 −
1

2
Cabt

atb
)

, T a = −
1

t2
ta . (3.13)

Under this change of coordinates we find that Y defined in (3.11) transforms as

2Y =
1

2T 2T̄ 2

[

2(T − T̄ )1(T − T̄ )2 − (T − T̄ )a(T − T̄ )bCD
ab

]

=
1

T 2T̄ 2
YD (3.14)

where we have introduced CD
ij = Cij , CD

ab = 1
2Cab and defined YD. In other words, defining

the dual Kähler potential KD(S,T ) as

KD(S,T ) = − ln
(

i(S − S̄)YD

)

, (3.15)

one finds that Kks and KD differ only by a Kähler transformation.15 From the coordinate

definition (3.13) one concludes that the corresponding cohomology lattice is

Γ1,1
s ⊕ ΓE8(−2) ∼= H0(E, Z) ⊕ H4(E, Z) ⊕ ΓE8(−2) (3.16)

where H0(E, Z) and H4(E, Z) are the zero and four cohomology of the Enriques fiber.

This can be seen as follows. The Kähler invariant combination to consider is Cρ with

C and ρ transforming as in (3.12). One can thus remove the overall factor of 1/t2 in the

definitions (3.13). On the one hand this leads to T 2 ∝ C such that T 2 scales the element in

H0(E). On the other hand T 1 ∝ C(2t1t2−Cabt
atb) which is the square of the complexified

Kähler form and hence parametrizes H4(E). We also see that the lattice (3.16) contains

the self-dual lattice ΓE8(−2) which has intersection form CD ab = 2Cab. The extra factor

2 arises due to the factor 1/2 in the definition of T 2. We will see in the next section that

the coordinates T 1,T 2,T a have a second advantage, since they can be identified with the

N = 1 coordinates of the orientifold theory.

We are now in the position to recall a functional ΦB(T ) counting the leading degenera-

cies of Euclidean D(-1), D1, D3 branes on the Enriques fiber. It was shown in refs. [33, 34],

that for T i,T a with YD < −1 one defines a convergent functional

ΦB(T ) = eiT 1
∏

r∈Π+

(1 − eir·T )(−1)m+ncB(r2/2) , (3.17)

where r · T = nT 1 + mT 2 − CD
abr

aT b for vectors r = (m,n, ra) in the lattice (3.16). In

the product (3.17) we denote by Π+ the set of positive roots of the fake monster Lie

15One finds that Kks = KD − f − f̄ , where f = − ln
`

i
√

2T 2
´

.
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superalgebra consisting of all nonzero vectors r with r2 = 2mn − CD
abr

arb ≥ −2 such that

m > 0, or m = 0 and n > 0. The exponents cB(r2/2) are given via the modular form

∑

n

cB(n)qn =
η(q2)8

η(q)8η(q4)8
, r2/2 = n , (3.18)

where η(q) is the standard eta function. It was argued in ref. [31] that ΦB(T ) counts

the degeneracies of D(-1), D1, D3 branes on the Enriques fiber. To show this Klemm

and Mariño [31] applied a similar argument as Gopakumar and Vafa [47] by performing

a Schwinger calculation including the light states at the moduli space locus parametrized

by T i,T a. The corresponding BPS particles are bound states of D3 branes wrapping the

Enriques fiber, D1 wrapped around the curves in the E8 sublattice in (3.16) and D(-1)

branes. The leading degeneracies are counted by the lowest genus free-energies F (g) of

the topological string on YE . Since F (0) is trivial for the Enriques Calabi-Yau the first

non-trivial contribution arises from a resummation of F (1) which precisely contains the

holomorphic function ΦB(T ). It is important to remark, that ΦB(T ) has particularly nice

modular properties as we will discuss in section 3.3. For contributions from the higher F (g)

this is only the case if also a non-holomorphic dependence is included. Therefore, we will

propose in section 3.3 that ΦB might contain the leading contribution to a holomorphic

and modular superpotential of the orientifold theory on the Enriques Calabi-Yau.

3.2 Effective action for the Enriques orientifold

In this section we study the effective four-dimensional N = 1 supergravity obtained by

compactifying type IIB supergravity on an orientifold of the Enriques Calabi-Yau YE. In

order to do this we first have to define an involution σ on YE and investigate its action on

the cohomology. It was shown in refs. [60, 30] that involutions on the Enriques surface can

be characterized by their action on the lattice (3.1). In particular, there exist an involution

acting with a minus sign on the ΓE8(−1) term in (3.1), while leaving the Γ1,1 term invariant.

We complete this involution by also inverting the P
1 ∼= T 2/Z2 base of the fibration. This

keeps the volume form of P
1 invariant. We thus find for the second cohomology lattice (3.1)

the split

H2
+(YE , Z) ∼= Z ⊕ Γ1,1 , H2

−(YE, Z) ∼= ΓE8(−1) , (3.19)

where H2
± are the plus and minus eigenspaces of σ∗. An integral basis ωA = (ωS , ωi, ωa) of

H2(YE , Z) is introduced by setting

ωα = (ωS , ωi) ∈ H2
+(YE , Z) , ωa ∈ H2

−(YE , Z) . (3.20)

This is consistent with the basis ωA introduced in the previous section. The non-vanishing

triple intersections KSij and KSab where already given in (3.3). It is important to note

that the orientifold constraints (2.14) are indeed satisfied, since Kabc, Kaαβ vanish for α, β

running over S, i.

The odd cohomology H3(YE , Z) also splits into positive and negative eigenspaces under

the involution. In order to make this split explicit, we note that the above σ can be extended

to the underlying K3 surface such that it acts with a minus sign on the ΓE8(−1) terms in
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the second cohomology lattice H2(K3, Z) given in (A.1), while keeping the remaining terms

invariant. This is of course consistent with the split of the two-cohomology (3.19). The

third cohomology H3(YE , Z) of the Enriques Calabi-Yau is obtained by wedging one-forms

of the T 2 with two-forms of the K3 both anti-invariant under the Z2 involution defining

the Enriques Calabi-Yau. Also including the negative sign of σ on the two one-forms of

T 2/Z2 we thus find that (3.2) splits as

H3
+(YE , Z) ∼= ΓE8(−1) ⊕ ΓE8(−1) , (3.21)

H3
−(YE , Z) ∼=

(

Γ1,1 ⊕ Γ1,1
g

)

⊕
(

Γ1,1 ⊕ Γ1,1
g

)

.

We are now in the position to discuss the reduction of the moduli spaces following the

general approach in section 2.1.

Let us first discuss the reduction of the N = 2 special Kähler manifold Mcs spanned

by the complex structure deformations zα = (zS , zi) and za. From (2.1) we note that the

holomorphic three-form Ω is an element of the negative eigenspace of σ∗. This implies that

in the orientifold setup we have za = 0 and the expansion (3.9) reduces to

Ω = X0(α0 + zααα − F̃zαβα − (2F̃ − zαF̃zα)β0) (3.22)

= X0(α0 + zααα + z1z2βS + zSz2β1 + zSz1β2 + zSz1z2β0) ,

where (α0, αα, βα, β0) is a real symplectic basis of H3
−(YE , Z) given in (3.21). The pre-

potential for this reduced special Kähler manifold M̃sk(z) is thus a function of the three

moduli zα = (zS , zi) only and takes the form F̃(zI) = −zSz1z2. The Kähler potential is

evaluated explicitly to be of the form

Kcs = − ln

[

i

∫

Ω(z) ∧ Ω̄(z̄)

]

= − ln
[

i(zS − z̄S)(z1 − z̄1)(z2 − z̄2)
]

, (3.23)

where we have removed the fundamental period X0 by a Kähler transformation. The

geometry of this reduced moduli space M̃cs has been studied intensively in the litera-

ture [31, 20]. It can be shown that the mirror map takes a particularly simple form due

to the absence of world-sheet instantons. It respects the discrete target space symmetry

Sl(2, Z)×Γ(2)×Γ(2) in the three coordinates zS , zi and can be given in terms of modular

functions of these groups. Note that in addition to the chiral multiplets just discussed,

the projected Enriques theory also admits h
(2,1)
+ = 8, N = 1 vector multiplets Aa. The

gauge-kinetic coupling function has to be holomorphic and is simply given by

fab(z) = −iCabz
S . (3.24)

The kinetic term for Aa has coupling matrix 1
2Re(fab) = 1

2CabImzS and is indeed positive

definite for ImzS > 0.

Let us now turn to the discussion of the Kähler moduli space M̃q inside the quater-

nionic moduli space Mq. In (2.4) and (2.6) we already specified the orientifold invariant

expansions of the Kähler form J , the NS-NS two-form B2 and the R-R forms C2, C4. In

the basis introduced in (3.20) we can summarize these expansions as

J = vSωS + viωi , B2 = baωa , C2 = caωa , C4 = ρSω̃S + ρiω̃
i , (3.25)
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where the basis (ω̃S , ω̃i) of H4
+(YE , Z) is chosen to be dual to (ωS, ωi). The real scalar fields

va, ρa as well as bS, bi, cS , ci have to vanish i.e. are projected out by the orientifold. The

N = 1 coordinates on the Kähler manifold M̃q are obtained by expanding the complex even

form ρc as in (2.8). This implies that the coordinates τ,Ga are exactly as given in (2.15).

The coordinates Tα = (TS , Ti) take the same form as the large volume result (2.16) due to

the absence of world-sheet instantons in the Enriques Calabi-Yau. Explicitly, one evaluates

TS = ie−φv1v2 − ρ̃S +
1

2(τ − τ̄)
CabG

a(G − Ḡ)b , (3.26)

Ti =
1

2
ie−φvSvj − ρi , i, j = 1, 2 , i 6= j ,

where ρ̃S = ρS − 1
2Cabc

abb. The N = 1 Kähler potential can be also deduced from our

general considerations in section 2.1. More precisely, one uses (3.26) together with (2.9)

or (2.19) to evaluate

Kq = − ln

[

1

4
i(T1 − T̄1)

(

2(TS − T̄S)(τ − τ̄) − Cab(G − Ḡ)a(G − Ḡ)b
]

− ln
[

− i(T2 − T̄2)
]

. (3.27)

This simple explicit form of Kq arises due to the special form of the intersections (3.3)

and the simple cubic pre-potential (3.10). Note that Kq is not corrected by N = 2 α′

contributions, since these vanish identically for the Enriques Calabi-Yau. In particular,

one notices that the perturbative α′ corrections proportional to the Euler characteristic

χ(YE) vanish due to χ(YE) = 2(h(1,1) − h(2,1)) = 0. We thus conclude that the N = 1

Enriques orientifold theory is particularly well under control due to the simplicity of the

underlying N = 2 theory. The N = 1 moduli space M̃q is also a coset, which is evaluated

to be of the form

M̃q = Sl(2, R)/U(1) ×
(

Sl(2, R)/U(1) × O(10, 2)/
(

O(10) × O(2)
)

)

. (3.28)

Remarkably, we find that the original N = 2 special Kähler manifold Mks given in (3.5)

arises as the second factor of M̃q. Such a phenomenon was already studied from a su-

pergravity point of view in refs. [61]. In the following we will discuss this duality in more

detail and make contact to the second parametrization of Mks introduced in (3.13).

Let us now discuss the appearance of the factor Mks in (3.28) in more detail. Recall

that we introduced in (3.13) a special set of coordinates S,T i,T a on Mks. Imposing the

orientifold constraints that in the large volume coordinates we have bS = bi = vα = 0 one

shows that the S,T coordinates truncate as

CT 1 → ie−φ

(

v1v2 +
1

2
Cabb

abb

)

, CT 2 → 1
2 ie−φ , (3.29)

CT a → −ie−φba , CS → iv2vS .

In this evaluation C was used in the gauge associated to the coordinates T i,T a. It dif-

fers by a factor 2v2 from its large volume value e−φ as imposed by its transformation
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property (3.12). We can now compare the orientifold truncations (3.29) with the defini-

tions (2.15) and (3.26) of the N = 1 coordinates. The orientifold limit of the CS,CT i,T a

are precisely the imaginary parts of τ,Ga, TS , T1. Viewing the N = 1 coordinates as ana-

lytic continuation we can make the following identifications

T 1 → TS , T 2 →
1

2
τ , T a → Ga , S → 2T1 . (3.30)

Using this map it is easy to check that also the N = 1 Kähler potential (3.27) for the

scalars τ,Ga, TS , T1 can be identified with the Kähler potential KD on Mks given in (3.15).

This clarifies the fact that the special Kähler manifold Mks arises as the second factor

in the N = 1 moduli space (3.28). In the next section we will discuss the holomorphic

superpotential and use the duality map (3.30) to propose explicit expression for W arising

from D3 instantons.

3.3 The D-instanton superpotential

In this section we propose a specific D-instanton superpotential for the Enriques orientifold.

Since our main focus is the dependence of WD-inst on the moduli τ,Ga we will concentrate

on the contribution proportional to einTS . As seen in (3.26) only the complex coordinate

TS depends on the fields Ga and hence shifts as discussed in section 2.4. The imaginary

part of TS contains the volume form of the Enriques fiber modded out by the orientifold

involution σ. If the corresponding four-cycle Σ can be extended to the F-theory picture

such that it contributes to the D-instanton superpotential we expect a correction of the

form

WD-inst =
∑

n

Θn(τ,Ga)einTS . (3.31)

In this expression we have also included multi-coverings of Σ labeled by n. A priory it is

not clear that these will contribute and higher Θn might be zero.

We will now use our intuition from topological string theory on the Enriques Calabi-

Yau and conjecture a possible form of WD-inst. Recall that in section 3.1 we introduced a

specific function ΦB(T 1,T 2,T a) encoding the lowest order degeneracies of D3, D1, D(-1)

bound states on the Enriques Calabi-Yau. In such states, the D3 instanton wraps the

Enriques fiber and couples to the complex coordinate T 1, while the D1 branes wrap cycles

in the E8 lattice of the second cohomology and couple to complex coordinate T a. The

D(-1) couple to the complex field T 2 and appear in generic D3, D1, D(-1) bound states.

Note that these are also the states which can appear in the instanton superpotential (3.31).

More precisely, using the map (3.30) we identify the coordinates T 2,T a with the orientifold

coordinates τ,Ga. The fiber volume appears in T 1 which is identified with TS . We now

expand the function ΦB given in (3.17) in powers of einTS as

ΦB

(

TS ,
1

2
τ,Ga

)

=
∑

n

θn(τ,Ga) einTS , (3.32)

which defines the coefficients θn(τ,Ga). Our proposal is that the Ga dependence of the

D-instanton superpotential (3.31) arises through these functions θn(τ,G). In other words,
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the superpotential arising due to D3 instantons on the Enriques fiber should take the form

WD-inst = A0

∑

n

cn θn(τ,Ga)

η10(τ)
einTS , (3.33)

where η(τ) is the standard eta-function and cn are appropriate numerical coefficients.

Unfortunately, without the complete F-theory picture we will not be able to check (3.33)

directly and details might change in an explicit analysis. However, making contact to the

discussion in section 2.4 we will discuss in the remainder of this section that the θn have the

correct properties to ensure that WD-inst is a modular form of weight −1 in τ . Moreover,

also the shifts of TS given in (2.22) and (2.35) are appropriately canceled by shifts of θn as

needed for consistency.

Let us finish this section with some remarks on the properties of the functions θn

in (3.33). These can be determined explicitly by expanding the expression for ΦB in the

product representation (3.17) or the corresponding sum representation [33, 34]. It was

shown in ref. [34] that ΦB is an automorphic form of weight 4. Following the arguments

of [54, 55] one deduces that the coefficient functions θn are Jacobi forms of weight 4 and

index n, i.e. transform as given in (2.36) and (2.37) under modular transformations and

B-shifts. In fact, in ref. [55] automorphic forms similar to ΦB were constructed by com-

bining appropriate Jacobi forms with the exponential einTS . The precise form of θn is then

determined by a lift of the modular coefficient functions such as (3.18). Instead of giving

the explicit expressions for θn(τ,G) we indirectly check some of their properties through a

differential equation which they obey. In order to do that, we note that ΦB(T ) satisfies a

wave equation of the form [33, 34]16

2
∂2ΦB

∂T 1∂T 2
− Cab

D

∂2ΦB

∂T a∂T b
= 0 . (3.34)

This equation is readily translated into a condition on the functions θn(τ,G) in (3.33). One

finds
(

in
∂

∂τ
−

1

2
Cab ∂2

∂Ga∂Gb

)

θn(τ,G) = 0 , (3.35)

which is the higher-dimensional analog of the heat equation for theta-functions on an

appropriate lattice. It also indicates that θn(τ,G) are Jacobi forms as expected from the

general discussion above. Since ΦB and hence θn(τ,G) are of weight 4 we conclude that

the inclusion of the η10(τ) factor ensures that WD-inst is of weight −1 as needed for (2.34).

To actually show that θn(τ,G) and η(τ) appear in the correct way in the conjectured

superpotential (3.33) one might calculate WD-inst in a specific limit. In particular, it would

be interesting to derive WD-inst in the orbifold limit using its heterotic dual.

4. Conclusions

In this paper we discussed the symmetries and non-perturbative corrections of the four-

dimensional effective theory arising in type IIB orientifolds with O3 and O7 planes. We

16This is far from obvious in the product representation of ΦB, but can be easily checked when writing

ΦB as a sum [33, 34].
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studied both the Kähler potential and superpotential in the orientifold large volume limit

for general N = 1 compactifications and later concentrated on a specific orientifold of the

Enriques Calabi-Yau.

In our general analysis we first discussed the N = 1 Kähler potential including pertur-

bative and non-perturbative α′ corrections inherited from the underlying N = 2 theory. A

subset of the non-perturbative α′ corrections were shown to survive the orientifold large vol-

ume limit, since they depend on the scalars Ga arising from the NS-NS and R-R two-forms.

They contribute to the Kähler potential in an explicitly calculable way, but do not alter the

N = 1 chiral coordinates. It was argued that in order to ensure duality invariance of the

α′ corrections to the Kähler potential also contribution due to D(-1) and D1 branes have

to be taken into account. In general, it seems hard to determine these corrections directly.

We thus restrained ourselves to a brief discussion of candidate modular completions pro-

posed for the underlying N = 2 theory. It would be interesting to derive these corrections

explicitly by using heterotic-F-theory duality or be analyzing specific orbifold examples.

Already the inclusion of the α′ corrections will lead to interesting new phenomenological

properties of these compactifications and a study of explicit examples is desirable.

From a phenomenological point of view the two-form scalars Ga have to be rendered

massive in a vacuum. We have shown that this can be achieved by a potential induced

by D3 instantons. More precisely, we have used the symmetries of the orientifold theory

to argue that the two-form scalars arise through Jacobi forms in front of the D3 instanton

contribution einT in the superpotential. These are generalizations of the well known theta-

functions and depend on the dilaton-axion τ as modular parameter. Due to holomorphicity

and modular invariance one might hope that the set of candidate Jacobi forms can be

restricted to a finite set for a given example. Candidate forms should appear in topological

string theory on the underlying Calabi-Yau manifold counting degeneracies of D1, D(-1)

states on cycles which become singular in the orientifold background. Additional boundary

conditions obtained in computations performed in specific limits of the theory might then

fix the precise form of the D-instanton superpotential.

In the finial part of the paper we studied a specific example. We considered an ori-

entifold of the Enriques Calabi-Yau. The kinetic terms of the four-dimensional N = 1

effective theory are determined in terms of a simple Kähler potential. We showed that

the corresponding moduli of bulk moduli fields is a product of cosets. Interestingly, the

reduction of the underlying quaternionic N = 2 geometry led to a Kähler manifold which

can be identified with the original deformation space of the complexified Kähler structure

of the underlying Calabi-Yau manifold times an Sl(2, R)/U(1) factor. This duality can

be used in the study of the D-instanton superpotential on the Enriques Calabi-Yau. We

mapped Jacobi forms known from topological string theory on the Enriques Calabi-Yau to

the corresponding N = 1 orientifold. This lead to a conjecture of a specific D3-instanton

superpotential. Unfortunately, explicit tests of this proposal are still missing and would

involve a careful construction of an F-theory realization of the Enriques scenario. It would

be also interesting to investigate other examples. Particularly, other K3 fibrations might

allow to investigate similar questions, which can then be tested using string-string dualities.
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A. On the geometry of the Enriques Calabi-Yau

In this appendix we review some facts about the geometry of the Enriques Calabi-Yau and

its cohomology lattice. Recall the cohomology lattice of the K3 surface is an even self-dual

lattice with Lorentzian signature. Explicitly, it takes the form [62]

H2(Z) ∼= [Γ1,1 ⊕ ΓE8(−1)]1 ⊕ [Γ1,1 ⊕ ΓE8(−1)]2 ⊕ Γ1,1
g ,

H0(Z) ⊕ H4(Z) ∼= Γ1,1
s , (A.1)

where the inner products on the sublattices ΓE8(−1) and Γ1,1 are given by

−(Cab) = −CE8 , (Cij) =

(

0 1

1 0

)

. (A.2)

with a, b = 1, . . . , 8 and i, j = 1, 2. Here CE8 is the Cartan matrix of the exceptional group

E8. In other words, choosing a basis ω̃K ∈ H2(K3, Z) with K = 1, . . . , 22 one has

∫

ω̃K ∧ ω̃L = dKL , (A.3)

where dKL equals to Cab on elements of ΓE8(−1) and Cij on elements of Γ1,1 and van-

ishes for all off-diagonal combinations in the lattice (A.1). Clearly, for the torus T
2 we

simply have the additional two-dimensional lattices H1(T2, Z) and H0(T2, Z)⊕H2(T2, Z).

In order to mod out the Enriques involution it is convenient to us an explicit algebraic

realization of the K3 surface. For example, a K3 surface admitting such an involution can

be obtained as a double covering of P
1 × P

1 branched at the vanishing locus of a bidegree

(4, 4) hypersurface [30]. The Picard lattice of the resulting K3 has rank 18. Using this al-

gebraic realization the action of the Enriques involution can be evaluated explicitly. Let us

denote (p1, p2, p3) ∈ H2(K3, Z) corresponding to the three terms in (A.1) and abbreviate

p4 ∈ H0(K3, Z)⊕H4(K3, Z) as well as p5 ∈ H1(T2, Z). The Z2 involution on the Enriques

Calabi-Yau acts on the elements pi as [29]17

|p1, p2, p3, p4, p5〉 → eπiδ·p4 |p2, p1,−p3, p4,−p5〉 , (A.4)

17The effect of the phase factor on the type II side was interpreted as turning on a Wilson line [29].
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where we denoted δ = (1,−1) ∈ Γ1,1
s . It it now straight forward to deduce the cohomology

of the Enriques Calabi-Yau

H2(YE , Z) ∼= Z ⊕ Γ1,1 ⊕ ΓE8(−1) , (A.5)

H3(YE , Z) ∼=
(

Γ1,1 ⊕ ΓE8(−1) ⊕ Γ1,1
g

)

⊕
(

Γ1,1 ⊕ ΓE8(−1) ⊕ Γ1,1
g

)

, (A.6)

where elements of H2(YE , Z) are of the form p1 + p2 while elements of H3(YE , Z) are of

the form p5 ∧ (p1 − p2). One thus shows that the dimensions h(p,q) of the cohomologies

H(p,q)(YE) are h(1,1)(YE) = h(2,1)(YE) = 11. The Enriques Calabi-Yau is shown to be self

mirror [29]. The two eleven-dimensional moduli spaces of complex and Kähler structure de-

formations are identified with the coset (3.5) mod the symmetry group Sl(2, Z)×O(10, 2, Z)

as discussed.
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[25] G. Curio and D. Lüst, A class of N = 1 dual string pairs and its modular superpotential, Int.

J. Mod. Phys. A 12 (1997) 5847 [hep-th/9703007].

[26] E. Witten, Five-brane effective action in M-theory, J. Geom. Phys. 22 (1997) 103

[hep-th/9610234].

– 29 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB766%2C178
http://arxiv.org/abs/hep-th/0609013
http://jhep.sissa.it/stdsearch?paper=06%282002%29060
http://arxiv.org/abs/hep-th/0204254
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB699%2C387
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB699%2C387
http://arxiv.org/abs/hep-th/0403067
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB718%2C153
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB718%2C153
http://arxiv.org/abs/hep-th/0412277
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB249%2C35
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB361%2C194
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB361%2C194
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB498%2C195
http://arxiv.org/abs/hep-th/9701093
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C98%2C211602
http://arxiv.org/abs/hep-th/0612027
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C165%2C311
http://arxiv.org/abs/hep-th/9309140
http://jhep.sissa.it/stdsearch?paper=07%282004%29047
http://jhep.sissa.it/stdsearch?paper=07%282004%29047
http://arxiv.org/abs/hep-th/0406078
http://arxiv.org/abs/hep-th/0607100
http://arxiv.org/abs/hep-th/0612125
http://jhep.sissa.it/stdsearch?paper=08%282007%29058
http://arxiv.org/abs/hep-th/0702187
http://arxiv.org/abs/hep-th/0504058
http://arxiv.org/abs/0704.3308
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB474%2C343
http://arxiv.org/abs/hep-th/9604030
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=MPLAE%2CA11%2C2199
http://arxiv.org/abs/hep-th/9607091
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA12%2C5847
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA12%2C5847
http://arxiv.org/abs/hep-th/9703007
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JGPHE%2C22%2C103
http://arxiv.org/abs/hep-th/9610234


J
H
E
P
1
0
(
2
0
0
7
)
0
0
4

[27] O.J. Ganor, A note on zeroes of superpotentials in F-theory, Nucl. Phys. B 499 (1997) 55

[hep-th/9612077].

[28] C. Borcea, K3 surfaces with involutions and Mirror Pairs of Calabi-Yau manifolds, in Mirror

Symmetry II, B. Greene and S.T. Yau eds., AMS/International Press, U.S.A. (1997);

C. Voisin, Miroirs et involutions sur les surfaces K3, Astérisque 218 (1993) 273.
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